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ORIGINAL ARTICLE

Restoration of exact design for partial compression perpendicular
to the grain

T.A.C.M. VAN DER PUT

Faculty of Civil Engineering and Geosciences, Timber Structures and Wood Technology, Delft University, Delft,

The Netherlands

Abstract
To correct the empirical design rules for locally loaded beams and blocks of Eurocode 5, the theoretical explanation of these
rules and of the applied test data is given. It appears that the design rule may be far too conservative, or too unsafe in other
cases, and only approximately applies for thin long bearing blocks and not for the short test specimens and support stresses
of beams. The theory of the determining influence of load spreading possibility on the strength is verified by all other
sufficient extended investigations leading to simple and reliable design rules.

Keywords: Timber, limit state analysis, failure criterion, compression strength of locally loaded blocks, stress spreading model

of the triaxial compression strength based on shear failure of the matrix..

1. Introduction

As all other Building Regulations, now and in the

past, the Dutch Code is based on theory and thus

satisfies the by law demanded calculable sufficient

reliability. This however changes due to introduction

of the newly revised Eurocode 5 rules. Although the

theoretical analytical approach of structural analysis

is always possible in the form of lower and upper

bound limit analysis and is prescribed as basis for

design also for the Eurocode, there is a strong

tendency to replace theory by arbitrarily extrapolated

empirical design equations. Since the extrapolated

empirical rule is never identical to the theoretical

description, it is always possible and necessary to

show, by theory, when an empirical design rule is

unacceptably unreliable. This has already started for

the new rules of the Eurocode 5 (as reported to the

Dutch Eurocode 5 committee). Examples of aban-

doned theoretical approaches, which were initially

accepted by CIB-W18 Eurocode 5 Committee

members are for example: van der Put (1990a,

1990b, 1991 and 1993), as will be shown later. In

this article, the replacement of theory by unsafe and

uneconomical empirical rules will be shown for

design of locally loaded beams and blocks to make

necessary corrections possible. This was already

started by comparison of theoretical with empirical

results (within the very limited range of applicability

of the empirical rules) by Leijten and Schoenmakers

(2007) and Larsen et al. (2008). In this article,

further the necessary theoretical explanation of the

meaning of the applied empirical Eurocode 5 rules is

given and the necessary theoretical explanation of

the too limited data on which these rules are based.

First in Section 2, the necessary derivation of the

empirical Eurocode rule, Equation 1, of Blass and

Görlacher (2004) is given, leading to a new explana-

tion of this empirically applied equation; which is

based on the derivation of Madsen (see Madsen et al.

1982) discussed in Section 2.3. Next, in Section 3,

the necessary theoretical analysis of the applied test

results is given, followed in Appendix A by a retrieval

of the earlier proposed; theory based, Code rules

which are in accordance with all known data and are

applied since long in many countries.

The empirical Madsen equation is shown in

Section 2 to apply only approximately for thin long

bearing blocks. This equation, thus, cannot be

applied in general as design and Eurocode rule.
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Further, it is adapted to the test-results of a too

short standard ASTM specimen, given by Case 3 of

Figure 1, and to the theoretically nearly as strong

variant, Case 2 of Figure 1. This standard test is

incorrectly regarded to be representative for all cases

in practice, independent of the dimensions of the

block and thus independent of the possibilities of

stress spreading into the block. This means for

example that line 3 in Figure 2, which is comparable

with the dimensions of the ASTM test (when

performed on an uncut block by a constant loading

rate test), replaces all other lines of Figure 2 in the

Code. This is of course unacceptable from an

economical point of view because of the higher

possible strengths of lines 4�7; and is also unaccep-

tably unsafe for the boundary conditions (block

dimensions) of the lines below line 3 of Figure 2.

In contrast, it is shown by Table II of Section 3.1 that

all strengths of all loading lines of Figure 2 follow

precisely from plasticity theory discussed in van der

Put (2008a). This leads to the necessary application

of the given, simple (internationally applied) design

rules in Appendix A, covering not only line 3, but all

lines 1�7 in Figure 2 precisely and covering all the

different lines of the other investigations as shown in

van der Put (1991) for the old Eurocode and French

rules and for the measurements of Suenson and

Graf, given in Kollmann (1984) and Korin (1990).

Thus, the apparent contrary and totally different

empirical results of all these different investigations

are fully explained even by the simple power law

representation of the exact theory of e.g. van der Put

(2008, 2008a,b) and van der Put and Leijten (2000).

This theory is based on the solution of the con-

tinuum mechanics boundary value problem of the

differential equations of equilibrium, expressed in

characteristics, which satisfy the failure criterion.

The theory is also shown to be predictive (as a theory

should be) and therefore all data of investigations

since 1991 and surely also the superfluous future

measurements are fully explained. This of course

also applies for the Eurocode data of Blass and

Görlacher (2004) as shown in paragraph 3.1 for

locally loaded blocks and in paragraph 3.2 for locally

loaded beams. The reliable and economical design

method, based on theory, demanded by European

law, thus exists and is given in Appendix A.

2. Derivation of the empirical design equation

for locally loaded members

2.1. Derivation of the equation parameters

Generalised empirical rules, which are not explained

by theory, are not allowed in design and in regula-

tions because of the unknown applicability and

reliability. Therefore, the derivation of the now

prescribed empirical design equation first has to be

given. Using, in this section, the same notation as

Blass and Görlacher (2004), for their design equa-

tion based on the equation of Madsen et al. (1982),
Figure 1. Loading cases perpendicular to the grain of Blass and

Görlacher (2004).

Figure 2. Strength of locally loaded beams of Kollmann (1951,

1984).

2 T.A.C.M. van der Put
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for locally applied compression perpendicular to the

grain, which is:

Fult ¼ A � b � ‘þ C � b (1)

where A and C are called ‘constants’ depending on

deformation and species, b is the load contact length

perpendicular to the grain and ‘ is the contact length

parallel to the grain (see Figure 1). Equation 1,

based on the theory of elasticity, can be explained as

follows:

The deformation Dh of the upper bearing

plate with respect to the bottom plate of Case 3 of

Figure 1 can, as in practice, approximately be based

on the mean stress s at the mean area b ‘þ hð Þ of

all cross sections of the spreading stress, thus:

Dh ¼ e � h ¼ r � h

E0
¼ F � h

E0 � b � ð‘þ hÞ
(2)

Due to confined dilatation, a tri-axial stress state is

possible providing a high strength under the loading

plate and at flow, this ultimate stress is the highest in

the middle under the plate and there is always tri-

axial stress spreading into the specimen. The spread-

ing area is such, that the load F divided by the

spreading area is equal to the theoretical stress

according to theory of elasticity which is the largest

in the middle under the plate. This applies at any

spreading depth below the plate. The deformation

Dh thus follows approximately from the deformation

of the spreading pyramid. With the x-axis along the

pyramid axis is the area of a cross section at a

distance x from the top c1x �c2x�c1c2x2 and

Dh ¼
ðx2

x1

edx ¼
ðx2

x1

P=ðEAð ÞÞdx ¼
ðx2

x1

P=ðEc1c2x2Þ
� �

dx

¼ P=Ec1c2ð Þ 1=x1 � 1=x2ð Þ
¼ P=ðEc1c2x1x2Þð Þ x2 � x1ð Þ ¼ P=EAmð Þh

because c1c2x1x2 ¼ c1c2ðxm � DÞðxm þ DÞ ¼ c1c2 ðx2
m�

D2Þ � c1c2x2
m ¼ Am, the mean area of the spreading

frustum. The ultimate value of the mean spreading

stress thus gives the start of flow in the middle under

the loading plate.

The deformation in the elastic state follows from

the plane stress state of Figure 1 by integration of the

local strain, assuming a stress spreading of 458,
because then the mean spreading stress is equal to

the theoretical maximal reaction stress in the middle

under the loading plate as given in Figure 1, Case 3.

Thus, the right deformation according to elasticity

theory is,

Dh ¼
ð

F=E90

bðl þ 2hÞ
dh ¼ F

2bE90

ð
dðlnðl þ 2hÞÞ

¼ F

2bE90

lnðl þ 2hÞ � lnðlÞð Þ ¼ F

2bE90

ln 1þ 2h

l

� �

According to the elastic�plastic approach of Limit

Design this deformation has to be equal to the

ultimate value of Equation 2 for an ultimate lower

bound solution of the strength. Thus:

Dh ¼ F

2bE90

ln 1 þ 2h

l

� �

� F

bE 0ðl þ hÞ
; leading to Equation 3 :

E0 ¼ E90 � 2h

‘þ hð Þ � ln 2h=‘þ 1ð Þ
� 0:9 � E90 (3)

or E? is (0.83�0.96) �E90 for Case 3 when

h=‘ ¼ 0:5 � 2. For loading Case 2: E?�Eƒ�0.96 �
E90 or (0.91�0.99) �E90 when h=‘ ¼ 0:5 � 2. Of

course, the precise value of E? instead of 0.9 �E90

can be used in Equation 3 for a special h=‘ value.

Equation 2 can be written for Case 3:

F ¼ Dh

h
� E 0 � b � ð‘þ hÞ ¼ Dh � E0 � b � ‘

h
þ Dh � E 0 � b

¼ A � b � ‘þ C � b (4)

Herewith the meaning of A and C in Equation 1 are

derived:

A ¼ Dh � E 0=h ¼ e � E 0 and C�Dh E 0

¼ e � E0 � h and C=A ¼ h

Substitution into Equation 1 gives:

Fult ¼ A � b � ‘þ C � b ¼ euE0bð‘þ hÞ ¼ Abð‘þ hÞ: (5)

The strength, thus, is based on a measured ultimate

strain ou under the load. This has to be explained

further and follows from the exact solution of

Section 2.2.

According to Eurocode 5 Equation 1 is:

Fult ¼ A � b � ‘þ C � b ¼ Abð‘þ C=AÞ
¼ Abð‘þ 0:3Þ:

(6)

Thus, against the data of Figure 2, the strength of 30

mm high blocks is regarded to always apply for all

dimensions and spreading possibilities. The real

ultimate load depending on the spreading possibility

follows from the theory given in complete form in

van der Put (2008a), which is applied in Sections 2.2

and 3.

Restoration of exact design 3
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2.2. Theoretical explanation of the Madsen equation

The strength according to the empirical Madsen

equation should be explainable by the exact theory of

limit analysis. According to van der Put (1991,

2008a), the real theoretical ultimate stress Fult=b‘,
as follows from the equilibrium method of plasticity,

can be given as:

rult ¼ F=b‘ ¼ 1:1 � fc;90

ffiffiffiffiffiffiffiffiffiffiffiffiffi
As=A0

p
; (7)

where fc,90 is the compression strength perpendicular

to grain given by Figure 4 and A0 ¼ b‘ is the area of

the contact surface of the upper loading in Figure 1,

Case 3, and As the area of the spread stresses with a

slope of 1 to 1 when initial flow, the start of plastic

strain of the Codes, is chosen as the ultimate state.

Thus As ¼ bð‘þ 2hÞ for Case 3, and from Equation 7

follows:

Fult ¼ rultA0 ¼ 1:1 � fc;90 � A0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
As=A0

p
¼ 1:1 � fc;90 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
As � A0

p
: (8)

As applied previously for the derivation of

Equation 2, the Madsen equation for the middle

plane Am is:

rmAm ¼ 1:1 � fc;90 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
As � A0

p
¼ 1:1 � fc;90 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAm þ DÞ � ðAm � DÞ

p
¼ 1:1 � fc;90 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

m � D2

q
�

� 1:1 � fc;90 � Amð1 � D2=2A2
mÞ

� fc;90 � Am; or : rm � fc;90

(9)

In these equations Am ¼ bðh þ ‘Þ and D�bh, the

difference between the maximal and minimal spread-

ing area. Equation 9 applies when D2=2A2
m51, thus

for ‘4h. Then, for ‘ ¼ ð1 � 2Þ � h follows:

1:1 1 � D2=2A2
m

� �
¼ 1:1 � 1:1ðbhÞ2

=ð2b2ðh þ lÞ2Þ
¼ 1:1 � 1:1=ð2ð1 þ l=hÞ2Þ ¼ ð1:1 � 1:1=8Þ to or :

¼ 0:96 � 1:04. Thus sm : (0.96�1.04) �fc,90.

Thus, the Madsen equation can be interpreted as

the requirement that the mean stress sm at the mean

elastic spreading area Am, at the middle of the depth,

should be lower thanfc,90. This explains the deriva-

tion and design method of Section 2.1 and deter-

mines ou of Equation 5.

It is now shown that the Madsen equation (with

C/A�h) only applies approximately for small

spreading possibilities when the load contact length

‘ is higher than the bearing block depth h. This result

shows that there is no possibility to generalise

empirical rules outside the dimensions and condi-

tions of testing without a theoretical analysis.

2.3. Derivation by Madsen et al.

Because the background of the prescribed design

equation, the Eurocode 5 rule Equation 1 is not

sufficiently reported, it is discussed here. Equation 1

is derived for example in Madsen et al. (1982),

adapted to tests results on standard blocks as given

in Figure 3. From elastic finite element analysis

follows that for sufficient long blocks, the

deformation and thus the stress is zero at a distance

LD : 1.5 �H.

The spreading action of the upper layers of the

beam of that length was modelled as a fractional

beam on elastic foundation with depth d, and

foundation modulus k�E90b/H, based on the com-

pressibility and thus on the compression modulus

perpendicular to the grain of the block. The bending

stiffness of the fractional beam is EI�E0bd3/12

where E0 is the modulus of elasticity in the long-

itudinal direction of the block. The depth d�0.17H

was found to duplicate the finite element results of

the deformation of the upper surface, because this

would be the deformation of the loaded separate

fractional beam of depth d at this elastic found-

ation The characteristic length is: k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4EI=k4

p
¼

0:2HðE0=E90Þ
0:25

and the location of zero reaction on

the fractional beam thus is: LD�3l�1.6H, slightly

higher than the theoretical 1.5H. Because the

displacement of the upper layer dLD/3, given by the

dashed, area in Figure 3, determines the embedment

reaction on the fractional beam, the end shear of the

beam will be: kdLD/3�0.53s90bH and from vertical

equilibrium of the beam follows:

Fu ¼ r90;ubðl þ 1:06HÞ (10)

confirming the elastic-full plastic solution Fu�
s90,ub(l�H) derived in Section 2.1.

Figure 3. Basic central compression test of Madsen et al. (1982).

4 T.A.C.M. van der Put
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For the solution for short, high, blocks a limited

depth H? applies for LD/15 instead of the empirically

adapted value of Madsen, giving a too low strength.

Thus, when regarded as a Limit Design solution,

Madsen’s adaptation gives a too low lower bound

solution of the strength.

For inelastic analysis, elastic full-plastic finite

element analysis was applied, leading to an elastic

foundation model with hinges at the loading plate,

(according to the kinked deformation of the upper

surface of the block adjacent to the bearing plate).

This leads to half the value of the dashed area of

Figure 3, and thus to an end shear of 0.265s90bH or:

Fu ¼ r90;ubðl þ 0:53HÞ: (11)

This solution thus also gives a too low lower bound

of the strength. Madsen replaced 0.53D by 30 mm,

indicating the depth H of his standard test blocks to

be: H�30/0.53�57 mm. Because the highest found

lower bound solution is the closest to/or equal to the

real solution, the higher and thus more probable

lower bound follows from the solution of Section

2.1: Fu�s90,ub(l�H).

This determining solution thus implicitly is ap-

plied as: Fu�s90,ub(l�30) as Eurocode rule, and

thus is it assumed that all structures and bearing

blocks have a depth of 30 mm and the lengths L of

the bearing blocks (or distance between applied

loads) is higher than L]l�3H�l�90 mm mm

(as necessary for confirmation of the spreading

according to the theory of Section 3.1 and according

to the beam on elastic foundation model). However,

much shorter blocks, that do not apply to Equation

1, were tested for Eurocode 5 data. These short

blocks thus mutually show the same spreading

length for all test specimens and thus the influence

of spreading according to the beam on elastic

foundation theory is not tested. Table I shows that

only one spreading case (because of the same

dimension ratios) is tested. The Eurocode rule thus

cannot apply generally for all possible dimensions as

given in Figure 2 but may possibly apply, when

properly adapted, to one case of Figure 2, (roughly

line 3 of Figure 2).

3. Explanation of the Eurocode 5 strength test

data for locally compression perpendicular to

the grain

3.1. Strength analysis of bearing blocks data

The expected strength values of the pure compres-

sion tests according to Case 1 of Blass and Görla-

cher (2004), given in Figure 4, with loading area

b � ‘ ¼ 120 � 100 mm2 and h�50, 100 and 200 mm

are the same, because the critical slip line will have

an angle of about 458, showing the same dissipation

for all three depths at movement along these slip-

lines. However, when the friction along the loading

plates is determining, a fainter slope (dashed line in

Figure 4) is enforced, causing a higher strength of

the specimen with h�50 mm. The fact that Cases 2

and 3, of Figure 1, show a minor influence of the

depth, is due to the chosen small axial length and

thus the small spreading length of the test speci-

mens. For these cases, the beam length is 300 mm

and the loading area is also 120 �100 mm2 with

h�50, 100 and 200 mm. As in the tests of Korin

(1990), the specimen length (of 300 mm) limits the

spreading length and because of the same full

spreading lengths, there is no difference in strength

for Case 3, of Figure 1, between specimens with

h�100 and h�200 mm. Korin’s results were

discussed in van der Put (1991) and if the there

given old exact Eurocode Design rules had been

followed, the unnecessary test series could have been

avoided.

As mentioned in Section 2.2, Equation 7, the

real theoretical ultimate stress, is: rult ¼
F=b‘ ¼ 1:1 � fc;90

ffiffiffiffiffiffiffiffiffiffiffiffiffi
As=A0

p
, where A0 ¼ b‘ is the con-

tact area of the upper loading in Figure 1, Case 3,

and As, the area of the spread stresses at the bottom,

is found by a spreading slope of 1.5�1 as applies for

Figure 4. Compression tests of Blass and Görlacher (2004).

Table I. Strength reduction factors with respect to full spreading

of Figure 1 data.

Case

Depth h

(mm)

Spreading

R

Friction

S

Strength

R�S

Data

R�S

2 200 1.0 1.0 1.0 1.0

3 200 1.0 1.0 1.0 1.0

2 100 0.9 1.1 1.0 1.0

3 100 1.0 1.1 1.1 1.1

2 50 (0.76) 1.2 0.9/10 1.0

3 50 (0.9) 1.2 (1.1)/�1.0 1.0

Notes: R�1 means spreading over the full length of the specimen.

Brackets on the frictionless values according to Figure 5, means

higher strength according to Figure 6 by friction along the loading

plates.

Case 2, Equation 15 and Case 3, Equation 16.

Restoration of exact design 5
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the ultimate state after sufficient plastic flow. Thus

for Case 3:

As ¼ bð‘þ 3hÞ (12)

and As� bð‘þ 3h=2Þ for Case 2. The spreading

length is limited by full spreading, thus is at the

maximum equal to the specimen length of 300 mm,

‘þ 3h 	 300 and ‘þ 3h=2 	 300, where h (�h? in

Figure 1) now is the spreading depth, giving:

Case 3 : rult ¼
Fult

b‘

¼ 1:1 � fc;90

ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘þ 3h

‘

s
	 1:1 � fc;90

ffiffiffiffiffiffiffiffi
300

100

r

¼ 1:1 � fc;90 � 1:73

¼ 1:9 � fc;90

(13)

Case 2 : rult ¼
Fult

b‘

¼ 1:1 � fc;90

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘þ 3h=2

‘

s
	 1:9 � fc;90 � 1:9 � 4 ¼ 7:6 MPa

(14)

Due to the maximal spreading length of 300 mm, the

ultimate strength is: 7.6 MPa. The best estimate of

the compression strength is: fc,90�4 MPa. This has

to be measured in this case on the same specimen

dimensions as Case 3, with a rigid bearing plate over

the full length of the specimen. The best alternative

form in this case is given by the cube test of Blass and

Görlacher (2004) with h�50 mm, giving a strength

of about 4 MPa. In Table I, the strength is given by a

reduction factor R with respect to the maximal value

of 7.6 MPa (of the specimens with full spreading

over 300 mm) according to Equations 14 and 13:

Case 2 : Spreading factor : R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ3hÞ=600

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð200þ3hÞ=600

p
	1 (15)

Case 3 : Spreading factor : R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ3hÞ=300

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð100þ3hÞ=300

p
	 1 (16)

Full spreading is reached for h�133 for Case 2, and

h�67 for Case 3. Therefore, the first two rows of

Table I only show the value 1.0. The influence of

higher strengths of the lower specimens due to

friction along the bearing plates follows from the

ratio of strengths of the Case 1 compression strength

tests with respect to the h�200 mm data, being:

S�4.1/3.4�1.2 for h�50 mm; S�3.7/3.4�1.1

for h�100 mm in Table I.

The values of R of Table I are based on the

maximum shear lines of Figure 5 of no friction at the

bearing plates. For specimens of 50 mm depths,

these reduction factors are placed between brackets,

because also the shear lines according to Figure 6 are

possible by friction, because the loading plate length

of ‘¼100 mm is higher than the depth h�50 mm.

The shear (or slip-) line field of Figure 6 is identical

to the slip line field of Case 2 of Figure 1 for h�100

mm, giving the same dissipation for movements

along slip lines and thus the same strength. Further,

for relative long plates, this slip line field may occur

as well in Cases 2 and 3, giving mutual the same

theoretical strengths of 50 mm specimens, leading to

the reduction factor (R�S)�1 for h�50 mm in

Table I. The brackets in Table I, thus, mean that the

strength according to Figure 6 and not according to

Figure 5 is determining.

It is now shown that the chosen special dimensions

in Blass and Görlacher (2004), with minor stress

spreading possibilities of the test specimens, are

causing the minor difference between Cases 2 and

3 and the minor influence of the member depth on

the strength as given in Table I. This is totally

different from the results of Figure 2, where the total

range of stress spreading possibilities is measured

and the strength may be six times higher with respect

to the Case 1 compression strength (when local

failure is determining). It is shown in van der Put

Table II. Stress spreading factor: kc;90 ¼ rc;90;u=fc;90 ¼ 1:1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 þ 442=s

p
of Figure 2 data.

1 2 3 4 5 6

Curve of Figure 2 S (cm) fc;90 (MPa) kc;90 Equation 18 Theory rc;90;u (MPa) Measurements rc;90;u (MPa) Ultimate strain 6/178 (%)

1 18 1.6 1.6 1.6 3.4

2 18 1.89 3.0 3.0 3.4

3 12 2.25 3.6 3.3 3.4

5 7.9 2.72 4.3 4.3 3.4

6 5.5 3.21 5.2 5.4 3.4

7 1.4 6.23 10B9.6 �7.5 �1

Notes: Columns 4 and 5 show a precise fit of data to the spreading theory.

Curve 7 is cut off at 7.5 MPa in Figure 2. The theoretical value of 10 MPa is not met by the local failure mechanism: sc,90,u56.

fc,90�6.1.6�9.6 MPa.

6 T.A.C.M. van der Put
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(1991, 2008a) and by Table II, that the strengths of

all loading lines of Figure 2 follow precisely from

theory giving:

kc;90 ¼
rc;90;u

fc;90

¼ 1:1 �
ffiffiffiffiffi
L0

s

r
¼ 1:1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 þ 3H þ L

2s

r
	 6

(17)

where the notations are given in Figure 7. With

H�179; L�350 and b�181 mm:

kc;90 ¼ 1:1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 þ ð3 � 178 þ 350Þ=2s

p
¼ 1:1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 þ 442=s

p
(18)

These compression strength values sc90u according

to the theory are given in Table II column 4, together

with the measurements in column 5, showing a

nearly perfect match. Due to possible splitting of

the test-specimen, the end-point of line 2, 5 and 6 in

Figure 2 are chosen at about 6 mm. This always

possible value of 6 mm, thus, is also taken as ultimate

value for the other cases of Figure 2. The theory

leads to real reliable very simple Eurocode rules as

given in Appendix A. Because these rules or the

consequential high strength already has been applied

since decades, it is a serious obstruction for building

possibilities to lower this value strongly as is done in

the new proposal for the Eurocode.

3.2. Strength analysis of locally loaded beams data

Only for loads directly adjacent to the support, the

failure mechanisms of locally loaded blocks and

locally loaded beams are comparable (van der Put

1991), making it possible to use the same design

rules (as then proposed in 1991 for the Eurocode).

This applies when the bottom plate at the support

and upper loading plate overlap. (see 9 and 10 of van

der Put and van de Kuilen (2009)). At larger

distances of the load to the support, spreading to

the opposite free surface is possible when a tensile

stress field is superposed. This tensile field is

normally not determining for failure except for

middle supports of continuous beams due to the

interaction with shear and bending stresses at failure.

This is derived in van der Put and van de Kuilen

(2009) leading to a design method, including con-

tinuous beams, which, besides moment redistribu-

tion by plastic flow in bending, may show a plastic

shear flow mechanism also causing a full moment

redistribution. The derivations show how the shear

stress may reduce the ultimate bending capacity.

Because failure at the middle support should be by

bending and shear and should not occur earlier by

compression perpendicular to the grain, the simple

Code requirement is possible, that the load-bearing

plate length ‘ 
 0:64h for not overlapping bearing

plates. For the middle support reaction of the

continuous beam, twice this value applies. This

requirement follows for loads close to the support

from the determining case of loading directly adja-

cent to the support to prevent shear failure of the

beam at the ultimate compression stress due to

spreading of about 2 fc,90 on the loading plate (see

van der Put and van de Kuilen 2009).

The failure analysis of Case 4 of Figure 1, of the

data of Blass and Görlacher (2004) for locally loaded

beams, probably on two supports, is difficult here

because no information is given on the true loading

curves and on the distance between the applied load

and supports or other boundary conditions at the

loading end, etc. It is further not defined what the

‘projecting member end’, the ‘measuring length’ etc.

is. Stated is also that j�1, meaning ‘ to be infinite,

despite the finite lengths of the bearing plates.

However, Table III of Blass and Görlacher (2004),

here also included as Table III, extended with the

Figure 7. Partial loaded and supported block.

Figure 6. Compression test.

Figure 5. Ultimate shear line construction.

Restoration of exact design 7
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determining factors, gives sufficient indication on

the type of failure.

Since the by Blass and Görlacher (2004) measured

ultimate loads are about of the same order, it is

certainly impossible that, the compression strength

perpendicular to the grain is always the cause of

failure, as supposed by Blass and Görlacher (2004),

because the ultimate compression stress (at flow) on

the bearing plate of 220�280 (series 3) is a factor

7.7 lower than for the plate of 80�100 (series 4),

showing thus no failure by compression and there-

fore the strength factor 7.7 in Table III, column 6

is placed between brackets. The stress is a factor

1/(7.7)�0.13 too low for compression failure. Simi-

larly, the by a factor 1.8 and 3.6 measured lower

compression stresses of series 1 and 2 are placed

between brackets. Compression failure has to be

excluded for these cases. Bending failure also has to

be excluded. Even series 1 of Table III was strong

enough to fail by shear, thus for e.g. series 5 the

bending stress is at least a factor (120/100)/(320/

1000)2�0.12 too low for bending failure. Further, if

in a three-point bending test, the distance between

the midpoint loading F and reaction R is a, then the

moment is: R � a ¼ F � a=2 ¼ fmbh2=6, giving:

F

b‘
¼ h

‘
� fm

3a=h
(19)

If the ultimate bearing stress F=b‘ is of the same

order (as measured) for the series, then h2=a‘ must

be constant for bending failure, which is not the case

because only h is varied in the tests series. Thus,

shear failure remains as possible cause of failure for

the beams with large bearing plates (series 1�3 in

Table III). This is the common failure type for

loading near the support. For shear failure due to

the reaction force R:

R

2bh=3
¼ fv ¼ const: or

F

bh
¼ const: thus :

F

b‘

¼ h

‘
� const: (20)

Thus, when the compression stress on the bearing

plate F/bl is about the same for all series, then also h/l

has to be the same when shear failure is the cause of

failure. This applies for series 1�3, as can be seen in

column 5 of Table III showing the same h=‘ � 2:6.

Clearly, shear failure does not apply for series 5 and

4 showing too high factors of 12.5 and 6.0 which

would show a higher strength by a factor 6/2.6�2.3

and 12.5/2.6�4.8. Thus, only these series 4 and 5

with small loading plates show early failure by

compression alone. For series 4 is as a first estimate:

Fu;4 ¼ qfc;90b‘ ¼ qfc;90 � 100 � 80 (21)

and for the same order of the ultimate load Fu and

the same spreading factor r F=Fu;4 � b � ‘=100 � 80.

This strength factor, relative to the strength of series

4, depending on the dimension of the loading plate is

given in column 6, showing that only series 4 and 5

show the high compression failure stress and not for

example series 3, which then shows a factor 1/

7.7�0.13 too low stress for compression failure.

At sufficient distance between the loads, the spread-

ing factor on the compression strength r is for

spreading in one direction similar to Equation 13:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 1:5hÞ=‘ð Þ

p
, for high beams and the by this

factor multiplied relative strengths of column 6, are

given in column 7. This means that series 4 and 5 are

about equally strong. This is confirmed by the

stress�strain diagrams of Blass and Göerlacher

(2004) at an ultimate strain of 0.04. These curves

also show that the shear strengths of series 1�3 are

according to the given factors in column 5. Thus, the

strength of series 1 is a factor 2.67/2.5�1.07 higher

with respect ot series 3. Because some specimens of

series 1 show early flow in compression (thus at a

stress of 1/1.8�0.55 times the ultimate stress) and

because of the measured long hardening range, it is

possible that series 1 also failed by compression

perpendicular to grain. In that case, the ultimate

strength of series 1 is a factor 4.0/4.4�0.9 lower

with respect to series 4 and 5 at the ultimate strain of

Table III. Failure mode of Figure 1, case 4 tests on beam ends.

Case 4 Figure 1 1 number 2h 3b 4‘ 5 shear h=‘ 6 compression �F/Fu,4 7�spreading �Fu,s/Fu,4

Series 1 6 320 120 120 2.67 (1.8) (1.8�2.23�4.0)

Series 2 4 630 120 240 2.63 (3.6)

Series 3 4 700 220 280 2.5 (7.7)

Series 4 5 1000 100 80 (12.5) 1 1.0�4.4�4.4

Series 5 10 540 120 90 (6.0) 1.35 1.35�3.16�4.3

Notes: A value �2.6 in column 5 means shear failure.

A value �1 in column 6 means compression perpendicular failure.

Column 7 gives column 6 times the spreading factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 1:5h=‘

p
showing series 4 and 5 to be equally strong.

8 T.A.C.M. van der Put
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0.04. This analytical factor of about 0.9 between the

strengths of series 1 with respect to series 4 and 5 is

confirmed by the data in Figure 4 of Blass and

Görlacher (2004). However, series 1 fails primary in

shear because the high compression stress at failure

does not influence the shear strength which is even a

bit higher than those of series 2 and 3.

It could have been predicted by design that series

1�3 are about equally strong and could not fail by

compression perpendicular to the grain and by the

stress spreading formula that series 4 and 5 are

equally strong. Thus, for example, series 4 remains

as only information on compression perpendicular

failure of beams. However, at failure the bending

stress was at least a factor 0.12 too low for bending

failure and at least a factor 1/4.8�0.21 too low for

shear failure. This information thus is not useful

because compression perpendicular should not re-

duce the bending and shear strength of a beam.

Thus, a combined loading mechanism should have

been designed and investigated accordingly. There-

fore, combined compression � shear strength me-

chanisms of locally loaded beams and of continuous

beams, depending on the dimensions and volume

effect, should be analysed by the theory of van der

Put and van de Kuilen (2009).

3.3. Serviceability requirement of locally loaded beams

and blocks

A demand for design is to guarantee sufficient

reliability. This of course also applies for compres-

sion strength perpendicular to the grain. This cannot

be replaced by a serviceability requirement. Such a

requirement is subjective and depends on the type of

structure and on the user, and is in the Codes as

possible application. Of course, this cannot replace a

statutory strength criterion with a guarantied level of

safety. Prescribing the application of a serviceability

condition, thus, means; prescribing a second always

determining non-sense strength criterion which, in

this case, prevents building possibility and new

future developments. Also, for instance, bracing

and prop-up at yacht building etc. is no longer

possible. According to this serviceability require-

ment, all important Dutch cities could not have been

build and should now be demolished, although the

loading is below the long-duration strength, despite

huge deformation of the head-beam over the pile

heads of the pile foundation, which is fully pressed

together at the pile head during the ages, showing no

empty spaces in wood any more.

The consequences of the serviceability limit of the

Eurocode (which is independent of specimen dimen-

sions) can be seen by drawing a vertical line in Figure

2 at the proposed 3 mm deformation restriction.

This is uneconomical for line 6 and at the same time

unacceptably unsafe for line 7 because the allowed

serviceability strain is above its ultimate failure

strain. If this serviceability 3 mm deformation serves

as ultimate strength condition, it should be com-

pared with the lower percentile of ultimate deforma-

tion, and then it is unsafe for most of the curves in

Figure 2. It is further forbidden to apply this

requirement because there is an European agree-

ment (pact) of not excluding reliable European

products on national markets by additional service-

ability requirement. There, in fact, only a Code

strength requirement exists.

4. Conclusions

An explanation and a new meaning is given to the

empirical Madsen equation for the partial compres-

sion strength perpendicular to the grain, applied by

Blass and Görlacher (2004) as Eurocode 5 rule. This

equation appears to be a stress�strain relation

expressed in the real elastic stress (determining the

mean spreading area) in the middle of the bearing

block, limiting this stress to the compression strength

fc,90.

The factor 0.3 of the Madsen/Eurocode equation:

Fult ¼ Abð‘þ 0:3Þ has to be replaced by the depth h

according to the theoretical meaning of this equation

as limitation of the mean elastic stress in the middle

of the bearing block in the ultimate state.

The derivation shows that the Madsen equation,

when generalised according to rigorous limit theory,

applies for limited stress spreading, when the depth

of the bearing block h or H is smaller than the length

‘ of the load contact plate and according to Madsen’s

derivation the length L of the block is higher than

‘þ 2LD ¼ ‘þ 3H thus: L > ‘þ 3H > 4H and the

rule thus is not generally applicable. These require-

ments for application are not fulfilled by the chosen

far too short and thick ASTM-specimens and the

Eurocode test data of Blass et al. (2004) thus do not

apply to the Madsen equation and thus do not verify

this Code rule.

Table I shows that, according to theory, no real

differences in strengths between Cases 2 and 3 could

be expected for the Blass and Görlacher (2004)

chosen depths between 50 and 200. The chosen

short standard ASTM dimensions of the Eurocode

test specimens, with limited stress spreading

possibility, causes negligible influence of the depth

of the tests.

The determining influence of the stress spreading

possibility on the strength is known since long and

discussed on several occasion at CIB-W18 meetings

(see e.g. van der Put (1991)) and follows e.g.

from Figure 2, where the total range of spreading

Restoration of exact design 9

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

ee
k 

T
U

 D
el

ft
],

 [
T

.A
.C

.M
. V

an
 D

er
 P

ut
] 

at
 0

8:
20

 1
2 

M
ay

 2
01

2 



possibilities is involved. Thus, the general conclusion

of Blass and Görlacher (2004) based on the tests of

Table I, of no influence of the depth of the specimen

on the strength does not hold. Also, the conclusion

that this lack of influence means that the service-

ability state is measured is not right because their

bend down load � displacement curves show that the

ultimate state is reached with a high amount of

plastic strain, of higher order than the real elastic

strain.

Figure 2 (whereof the ultimate values of all lines

are explained by theory by one and the same

equation with the same compression cube-strength)

shows, that the in Blass and Görlacher (2004)

proposed limit of absolute deformation at the con-

tact surface to be not more than a few millimetres

does not limit the stress to one value independent of

dimensions and gives no information about safety

and the loading state, which may be the ultimate

state or may be far below this ultimate state for other

boundary conditions. The design and the Code

requirements remain to provide a criterion of suffi-

cient safety against failure. An extrapolated, sub-

jective, serviceability state is thus shown here to give

no information on the violation of this reliability.

The local compression strength perpendicular to

the grain contains a spreading factor as given in

Equations 13 and 14. It has to be accepted for

complicated boundary value problems, that the

strength contains a geometric factor as applies for

example in Fracture Mechanics and by volume

effects of shear- tensile- and embedding strengths.

The spreading factor accounts for a sufficient high

triaxial compression strength by confined dilatation

and for a sufficient low ultimate shear stress in the

wood matrix.

The spreading theory applies generally, also for for

example concrete and for the embedding strength of

particle board wherefore an extended verification is

given by van der Put (2008b).

It is shown that the lack of knowledge of the

spreading effect in Eurocode 5 can be highly unsafe.

This already occurred for example by measuring

high embedding strengths on specimens with large

nail distances and applying this to the low strength

structure by small nail distances.

Although the given design rules apply for the

whole a Europe, no information is given on the

thereupon-based tests on beam ends. Whether it was

a three-point or four-point bending test and how it

was managed to make the free support determining

for failure by shear and not the loading point in

combination with bending. This information is

needed for theory confirmation.

The design rules for bearing blocks do not apply

unconditionally for support stresses in beams. Only

for loads directly adjacent to the support, the failure

mechanisms of locally loaded blocks and locally

loaded beams are comparable. At larger load dis-

tances, the area of the bearing plate should be so

high that ultimate load according to the spreading

mechanism is lower than the adjacent ultimate shear

force. Under-dimensioned bearing plates for loads

near a middle support of continuous beams also can

be prevented by the simple Code requirement of a

bearing plate length ‘ 
 0:64h for not overlapping

bearing plates (of load and reaction).

Table III (and the data) shows series 4 and 5 with

the smallest bearing plates to be the strongest, due to

high shear strength. The other beams series 1�3 fail

in shear and thus should not have been accounted as

compression failure data (giving the wrong design

equation for support stresses in the Eurocode).

It could have been predicted by spreading theory

that series 4 and 5 of Table III would be equally

strong and provide no additional information on the

occurred local compression failure, which could have

been obtained by testing blocks. Because for exam-

ple in series 4, the bending and shear stress were

respectively 0.12 and 0.21 times the ultimate value,

the wanted design value is not measured for com-

bined failure by compression, bending and shear.

Right and reliable design rules, based on theory,

covering data of all published investigations, exist

and are given in van der Put (1991) and its Appendix

B for locally loaded bearing blocks. For locally

loaded beams, design should be based on plasticity

theory with the failure criterion for combined

stresses, given in van der Put and van de Kuilen

(2009). Design rules also exist in technical reports of

the Stevin laboratory for pin-dowel joints, and in

particle board, accounting for the possible very high

embedding strength. This is common knowledge

already applied for over 30 years.
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Appendix A: Proposal for design rules for

partial compression perpendicular to the grain

The design rules for partial compression perpendicular to the

grain, proposed at CIB-W18 of 1990, 1991 and 2000, are based

on the theory, published in complete form in van der Put (2008a),

providing an excellent explanation and precise fit of all the

apparent contradictory test results of Suenson, the old Eurocode,

the French rules, Graf, Korin and Augustin et al. in all

circumstances and loading cases. The CIB-W18 Eurocode

proposal for bearing blocks was based, as should be, on the

measured ultimate strength according to a spreading slope of 1.5�
1. The proposal here is based on the definition of the Regulations

of the strength being the stress at the start of initial flow, showing

the near elastic spreading slope of 1�1. Then:

rc;90;d 	 kc;90 � fc;90;d , where:

kc;90 ¼
ffiffiffiffiffiffiffiffi
L=s

p
	 5 with : L 	 a þ s þ l1=2;L 	 2H þ s

The notations are given in Figure A.1.

For the bearing strength of a middle section of a beam between

two plates of lengths L and s:

kc;90 ¼
ffiffiffiffiffiffiffiffiffi
L0=s

p
	 5 with: L0 	 H þ L þ s=2; and:

(L0 	 a þ s þ l1=2 ; the length of the specimen). See Figure 7

(and Figure A1) for the meaning of the notations.

Comment: The factor 1.1 (�1.08) before
ffiffiffiffiffiffiffiffi
L=s

p
is ignored so

that the equations also apply for a�0.

The strong increase of the compression strength, up to at least a

factor 5 as measured, or a factor 6 theoretically (by a local failure

mechanism), is due to confined dilatation by hardening. Thus, the

best experimental confirmation is obtained at a high inelastic

strain when the empty spaces in wood are pressed away. It should

not apply for plane stress at a stress-free boundary because there

the uniaxial compression strength applies. However the factor c in:

rc;90;u ¼ c � fc;90

ffiffiffiffiffiffiffiffi
L=s

p
is c�1.08 for central loading and c�1 for an end loaded block

(when a�0). and c can safely be taken to be c�1 for all cases.

The reason of this lack of difference in behaviour is the influence

of the reinforcement, also perpendicular to the grain. The, by

compression squeezed cell walls, act as additional reinforcement

preventing the existence of continuous splitting planes in wood

and providing a sufficiently strong reinforcement to build up

confined dilatation quickly. This thus is an extension of the theory

to stress-free boundaries, providing the simplification of the

design rules with respect to the earlier CIB-W18 proposals.

Appendix B: Remarks regarding the

availability of references

Each investigation is worth something and delivers something new

but is incomplete when not explained by theory making it possible

to connect all data of previous investigations and by that, to

predict behaviour in all circumstances as necessary for design. Of

importance is for example the approach of Bogensberger et al.

(2011) providing the exact descriptive method of description of

the loading curve by a flow rule with hardening properties. This

opens future possibilities of theory development based on the real

failure criterion as flow rule and may deliver by the hardening

properties information on the real stress�strain rate

behaviour according to molecular deformation kinetics at con-

fined dilatation.

For the discussion here of the exact elastic-full-plastic solution

according to limit analysis, very limited literature is available and

only the oldest measurements, given for example by Figure 2, are

sufficiently extended for theory verification. As mentioned, the

theory, developed long ago is rigorous, a universal law of nature,

and thus is able to explain and predict behaviour as necessary for a

reliable design method and as shown here by the explanation of

strength behaviour. The explanation and prediction of the

strength of the North American ASTM-specimen database was

repeated in 1991 at explaining the Korin (1990) data. In that

respect, there is nothing new in later and recent publications of for

example Blass and Gorlacher (2004) and Basta (2005) because

the existence of the exact approach is not mentioned and ignored

as guidance even though the power law approximation is much

simpler to use than any empirical equation. Also the tests of Blass

and Basta on the above mentioned ASTM-specimens were for

example done 40 years ago and were repeated many times since

then (see for example the relevant CIB-W18 publications) and

Figure A.1. Continuous supported block with partial loading

perpendicular to the grain.
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can be expected to still be repeated over 40 years because no

progress is possible by the self-imposed omission of rigorous

theory application. This is more the case because also the

necessary elementary design of tests and test-specimens on the

prediction of strength behaviour is lacking, Therefore, it is for

example not noticed that the beams of Blass failed by shear and

not by compression and his blocks, despite dimensions variation,

all showed the same strength, by the same limited spreading

possibility and thus no difference in spreading effect was tested.

The tests of for example Basta on high longitudinal ends of beam-

webs could have shown the full influence of the spreading effect in

one direction when his longitudinal web length was enough

extended according to the rolling shear strength pre-calculation.

Due to the strict absence of theory and elementary calculation,

mistakes and insufficiencies are not noticeable. Therefore, mea-

surements without theoretical strength prediction in advance and

theoretical explanation of the result afterwards, are meaningless

for theory discussion. Based thereupon no reliable conclusion is

possible.

In the article is shown again that application of the simple

spreading equation as done in Section 3, to predict and explain all

strength values of the different cases is sufficient.

12 T.A.C.M. van der Put
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